Maths for Computing Assignment 3 Solutions

1. (3 marks) Prove or disprove the following statement. The set of real numbers containing only a finite number of 1 s in their decimal representation is countable.
(Numbers allowed in the sets are 1.11, 11.1, 1.111, etc. Numbers not allowed in the set are 1.11..., 1.2, 3.4111..., etc.)

Solution: The set is countable. We can arrange all the real numbers containing only finitely many 1 s in a matrix. In the i th row of this matrix, we have, in increasing order, real numbers that have $i-1$ many $1 s$ before decimal.

```
0,.1,.11,.111,.1111,...
1, 1.1, 1.11, 1.111, 1.1111,\ldots
11,11.1, 11.11, 11.111, 11.1111,\ldots
```

Any real number that contains i many 1 s before decimal and total j many $1 s$ after decimal will be present in the $(i+1)$ th row and $(j+1)$ th column. (It's ok, if you have missed 0 . No marks will be deducted for that.)

Now we can simply traverse all the numbers in the matrix in a dove-tail order to create a sequence of real numbers that contains only finitely many 1 s. Since we have a sequence of such real numbers, their set is countable.
2. (5 marks) Let $X=\{x \mid x$ is a real number such that $1<x<2\}$. Then prove that $|X|=|R|$.
Solution: This turned out to be a lot more easier than I predicted.
We can prove $|X|=|R|$ using Schröder-Bernstein theorem. That is, we will give an injection from X to R and from R to X.

Injection from X to $R: f: X \rightarrow R$ is $f(x)=x$. Clearly, f is an injection.

Injection from R to $X: f: R \rightarrow X$ is $f(x)=\frac{2^{x}}{1+2^{x}}+1$.

Range of f is X : Since 2^{x} is positive for any $x \in R, \frac{2^{x}}{1+2^{x}}>0$. Therefore, $\frac{2^{x}}{1+2^{x}}+1>1$.
Also, $2^{x}<1+2^{x} \Longrightarrow \frac{2^{x}}{1+2^{x}}<1 \Longrightarrow \frac{2^{x}}{1+2^{x}}+1<2$. Hence, $f(x)<2$.
f is one-to-one: Let $x, y \in R$ such that $f(x)=f(y)$. Then,

$$
\begin{array}{rlrl}
& & \begin{aligned}
\frac{2^{x}}{1+2^{x}}+1 & =\frac{2^{y}}{1+2^{y}}+1 \\
\Longrightarrow \quad \frac{2^{x}}{1+2^{x}} & =\frac{2^{y}}{1+2^{y}} \\
\Longrightarrow \quad & \frac{1+2^{x}}{2^{x}}
\end{aligned}=\frac{1+2^{y}}{2^{y}} \\
\Longrightarrow \quad 1+\frac{1}{2^{x}} & =1+\frac{1}{2^{y}} \\
\Longrightarrow \quad & \frac{1}{2^{x}} & =\frac{1}{2^{y}} \\
\Longrightarrow \quad & & 2^{x} & =2^{y} \\
\Longrightarrow \quad & x & =y \quad \text { (take log on both sides.) }
\end{array}
$$

